Meteorological analysis and forecast data as input for drought monitoring

Christoph Wittmann, Florian Weidle, Alexander Kann

ADA Symposium 04.11.2015

- INCA Analysis system
- Forecast models entering ADA
- Predictability of drought in summer 2015

INCA Analyses

Parameter	ab Jahr	Forecast (d)	Auflösung	Anmerkung
Minimumtemperatur (24 h) [°C d ⁻¹]	2003	3 bzw. 10	1 km*)	
Maximumtemperatur (24 h) [°C d ⁻¹]	2003	3 bzw. 10	1 km	
Mitteltemperatur (24 h) [°C d ⁻¹]	2003	3 bzw. 10	1 km	
Tagesmitteltemperatur (12 h) [°C d ⁻¹]	2003	3 bzw. 10	1 km	abhängig von Modellen
Globalstrahlung [MJ m ⁻² d ⁻¹]	2003	3 bzw. 10	1 km	Umrechnung auf MJ m ⁻²
Relative Luftfeuchte [% d ⁻¹]	2003	3 bzw. 10	1 km	oder Evapotranspiration
Wind $[m s^{-1} d^{-1}]$	2003	3 bzw. 10	1 km	oder Evapotranspiration
Evapotranspiration (PM) [mm d ⁻¹]	2003	3 bzw. 10	1 km	
Schneebedeckung (SWE) [mm d ⁻¹]	2003	3 bzw. 10	1 km	vorerst nur Ja/Nein (mit W. Schöner besprechen)
Niederschlag [mm d ⁻¹]	2003	3 bzw. 10	1 km	

*) Die räumliche Auflösung der Wettermodelle liegt ursprünglich bei 4.8km für die nächsten 3 Tage (ALARO) und ca. 16.km für die nächsten 10 Tage (ECMWF). Die Daten werden jedoch auf das 1km INCA Gitter interpoliert und in dieser Auflösung zur Verfügung gestellt.

INCA – Integrated Nowcasting through Comprehensive Analysis

INCA details

Austrian domain: Region: Eastern Alps Domain size: 700x 400 km Elevation range: 100 - 4000 m Resolution: horizontal: 1km, vertical: 125 - 200 m, time: 5 min - 1 h

2-D Analyses und Forecasts

- Precipitation
- Precipitation type
- Cloudiness
- Global radiation

3-D Analyses und Forecasts

- Temperature
- Humidity
- Wind

INCA Domain & Orography

2-D Convective Analyses Fields

- CAPE, CIN, LCL, LFC
- Instability Indices (LI, Showalter, ..)
- Trigger-Temperature-Deficit
- Equivalent Potential Temperature
- Moisture convergence
- Mass convergence

Other derived 2-D Fields

- Snowfall line
- Icing potential
- Wind chill

INCA nowcasting strategy

	Precipitation	Cloudiness	Temperature & Humidity	Wind
Analysis background	Radar data	Satellite data	NWP forecast (ALARO)	NWP forecast (ALARO)
Nowcasting method	Extrapolation with motion vectors	Extrapolation with motion vectors	Persistence + modelled trend	Presistence + modelled trend
NWP forecast	ALARO+ ECMWF	ALARO	ALARO	ALARO
Nowcasting limit	6 hours	6 hours	3 to 12 hours (depending on stability)	6 hours

Temperature Analysis I

Temperature Analysis II

Quality of Analysis Lowlands: MAE = 1.0-1.5 °C Alpin Mountains: MAE = 1.0-1.5 °C Alpin Valleys: MAE = 1.5-2.0 °C

02-11-2015

2 Nov 2015, 07UTC

Improvements of the precipitation analysis fields by applying quality control

- 1. Station data consistency check e.g. compare 10min precipitation to aggregated 1min obs / sunshine data
- 2. Plausibility filter Detect unrealistically high/low values, NaNs, etc.
- **3. Climatological limits** defined according to time of the year and accumulation period
- 4. Flatfilter

Identify and remove suspicious series of constant values

5. Singlefilter

Identify and remove single "outliers" (i.e., values that appear suspiciously high / low compared to neighbourhood or radar data)

- **6. Accumulation filter** same as 5) but for longer accumulation periods
- **7. SP filter** Cross check with cloudiness
- 8. Radar filters

Remove artefacts in the radar fields

9. Blacklist

Permanently exclude bad stations from analysis

INCA precipitation without advanced quality control

INCA 24h RM_noqc Accumulated Precipitation [mm] 17.08.2013 06:00 UTC (-24h)

Daily precipitation analysis without Quality Control

INCA precipitation with advanced quality control

INCA 24h RM Accumulated Precipitation [mm] 17.08.2013 06:00 UTC (-24h)

Daily precipitation analysis with Quality Control

Precipitation analysis

Components of INCA precipitation analysis

18 July 2009, 07:30 UTC

ADA Symposium 04.11.2015

- INCA Analysis system
- Forecast models entering ADA
- Predictability of drought in summer 2015

NWP models used at ZAMG

¹⁾ probabilistic system

²⁾ deterministic system

Fact-Sheet NWP models

ECMWF Monthly/Seasonal Forecast System

ECMWF 16km, 00/12 UTC, +240h lead time, 6h time steps; ~8h after T0

ECMWF-EPS 32km, 00/12 UTC, +360h lead time, 50 members, 6h time steps; ~9h after T0

ALARO

5km, 00/06/12/18 UTC, +72h lead time, 1h time steps, ~3h after TO

LAEF 11km, 00/12 UTC, +72h lead time, 16 members, 1h time steps, ~4h after TO

AROME (operational since 01/2014, major upgrade in 08/2014) 2.5km, 8 runs, +60h lead time, 1h time step, ~3h after T0

INCA

1km, 5min/15min/hourly, +12h lead time, 5min/15min/1h time step, ~10 to 45min after T0

Ensemble INCA (operational by end 2013) 1km, 15min/hourly, +12h lead time, 15min/1h time steps, ~30 to 45min after T0

Operational 5km model ALARO

Horizontal resolution	4.8 km (600x540)
Vertical resolution	60 Levels
Runs / day	4 (00,06,12,18 UTC)
Forecast Range	72h
Output-Frequency	1/h
Model time step	180sec
Coupling model	IFS (ECMWF)
Coupling update	3h
Assimilation	Opt. Interpolation

ALADIN-AUSTRIA 5km Domain & Topography

Meteorologie und Geodynamik

Operational 2.5 km model AROME

Assimilated observation data in AROME

Observation type	assimilated fields	data source
SYNOP+TAWES	T2m,RH2m,U10m,V10m, φ	ZAMG+OPLACE
AMDAR (airplanes)	U,V,T	ZAMG+OPLACE
GEOWIND (SAT-Winde) MSG3	U,V	OPLACE
TEMP (radiosondes)	U,V,T,Q,φ	ZAMG+OPLACE
PILOT	U,V	ZAMG
WINDPROFILER*)	U,V	ECMWF MARSARCHIV/OPLACE
MSG3-SEVIRI	WV-radiances	OPLACE
NOAA16/18/19+MetOp-A-B AMSU-A,-B,MHS,HIRS	radiances	OPLACE
MetOp-A-B IASI	radiances	OPLACE
ASCAT wind	U10m,V10m (25km)	ZAMG/EUMETSAT
GPS*)	zenith total delay (ZTD)	TU-Vienna
RADAR*)	reflectivity / radial winds	Austrocontrol/Remote Sensing
SNOWGRID snow cover	SWE	ZAMG

Operational LAMEPS ALADIN-LAEF

Ensemble size	16+1+1	
Horizontal resolution	11 km	ALADIN-LAB
Vertical resolution	45 level	The second secon
Runs/Day	2 (00, 12 UTC)	
Forecast range	72h	
Output-Frequency	1h	
Model time step	360s	·/ mi .
Coupling-Model (time- lagged)	ECMWF-EPS (global SV Vectors)	
Coupling-Update	6h	14 J.

ALADIN-LAEF Domain & Topography

Uncertainty in numerical weather forecast originate from different sources:

- errors in initial conditions (atmosphere, soil/surface conditions, sea/lake temperature) trough incomplete data coverage
- errors in initial conditions entering due to observation errors (quality control)
- for LAM models: errors entering at the domain boarder
- "errors"/limitation in description of physical processes (microphysics, turbulence, etc)
- errors due to limited numerical accuracy in solving equations
- ... other sources

quantifiying these uncertainties leads us to "ensemble prediction systems" (EPS)

EPS used for short range and long range (up to seasonal prediction and climate scenarios)

ADA Symposium 04.11.2015

Stochastic physics – trying to quantify model error

Stochastic "noise" entering model tendency equations to simulate uncertainty in models physics:

$$\frac{\partial e_j}{\partial t} = A\left(e_j, t\right) + P'\left(e_j, t\right)$$

Modified tendency equation (by adding perturbation P')

$$P'_{j}\left(e_{j},t\right) = \left(1 + r_{j}(\lambda,\boldsymbol{\varphi},t)_{D,T}\right)P_{j}\left(e_{j},t\right)$$

• surface temperature

- liquid soil water content
- frozen soil water content
- snow albedo
- snow reservoir water content
- snow density
- water intercepted by vegetation

Stochastic physics – sensitivity studies II

Significant effect on drought relevant forecast parameters (example: soil temperature and soil humidity)

stochastic physics is part of EPS

Content

ADA Symposium 04.11.2015

- INCA Analysis system
- Forecast models entering ADA
- Predictability of drought in summer 2015

Seasonal forecasts

ADA Symposium 04.11.2015

• Seasonal forecasts provide information about the "climate" to be expected in the coming months

Different to weather forecasting systems, seasonal forecasts should not be considered to predict the atmospheric conditions at a certain time but as prediction of an averaged (over time) state of the atmosphere.

- Seasonal forecasts are possible thanks to the fact that the averaged state of the atmosphere is related to a number of components which themselves show variations on long time scales (seasons and years) and, to a certain extent, are predictable (e.g. ENSO).
- For Seasonal forecasts a probabilistic approach is needed since it is only possible to predict the range of likely "climate" scenarios for the coming months.

Summer 2015 - July

ADA Symposium 04.11.2015

Temperature anomaly

Precipitation anomaly

- Warmest July in the history, more than 3 K above the climate average
- dry in the north and east

Predictability of July temperatures – Fcst from Jan 2015

ADA Symposium

Temperature anomaly of **ensemble mean**

Predictability of the hot and dry episodes

Seasonal forecasts: Initial time January 2015 – Range of temperature forecasts for July (+7 months forecast)

ADA Symposium 04.11.2015

Minimum and maximum forecasts unrealistic cold/hot?

Predictability of July temperatures – Fcst from Jan 2015

75 percentile seems to capture the hot temperatures well

ZAMG Zentrolanstalt für Meteorologie und Geodynamik

ADA Symposium

ADA Symposium

Thanks for attention!

